
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Five Reasons for Scenario-Based Design

John M. Carroll
Department of Computer Science and

Center for Human-Computer Interaction
Virginia Tech

Blacksburg, VA 24061-0106
Tel: 1-540-231-8453

E-mail: carroll@cs.vt.edu
Abstract

Scenarios of human-computer interaction help us to
understand and to create computer systems and
applications as artifacts of human activity Ñas things to
learn from, as tools to use in one's work, as media for
interacting with other people. Scenario-based design of
information technology addresses five technical
challenges: Scenarios evoke reflection in the content of
design work, helping developers coordinate design action
and reflection. Scenarios are at once concrete and flexible,
helping developers manage the fluidy of design situations.
Scenarios afford multiple views of an interaction, diverse
kinds and amounts of detailing, helping developers
manage the many consequences entailed by any given
design move. Scenarios can also be abstracted and
categorized, helping designers to recognize, capture, and
reuse generalizations, and to address the challenge that
technical knowledge often lags the needs of technical
design. Finally, scenarios promote work-oriented
communication among stakeholders, helping to make
design activities more accessible to the great variety of
expertise that can contribute to design, and addressing the
challenge that external constraints designers and clients
often distract attention from the needs and concerns of the
people who will use the technology.

1. Introduction

Designers of information systems and applications face
a disturbing reality. While there is plenty of opportunity
to do things that make a difference, it is never unequivocal
just what should be done, or even just what the real
problems are. The problems can only be definitively
analyzed by being solved; the appropriate solution
methods must typically be executed in order to be
identified; the solutions must be implemented in order to
be specified. All the while, the designer faces convoluted
networks of tradeoff and interdependency, the potential of
0-7695-0001-3/99 $10
untoward impacts on people and their social institutions,
and the likelihood that changing cultural and technological
circumstances will obviate any solution before it can be
deployed.

Most software engineering methods belong to a
methodological tradition that seeks to control the
complexity and fluidity of design through techniques that
filter the information considered and decompose the
problems to be solved. A complementary tradition seeks
to exploit the complexity and fluidity of design by trying
to learn more about the structure and dynamics of the
problem domain, by trying to see the situation in many
different ways, and by interacting intimately with the
concrete elements of the situation [1,2,11,28].

Scenario-based design techniques belong to this
complementary approach. In scenario-based design,
descriptions of how people accomplish tasks are a primary
working design representation. Software design is
fundamentally about envisioning and facilitating new
ways of doing things and new things to do. Maintaining
a continuous focus on situations of and consequences for
human work and activity promotes learning about the
structure and dynamics of problem domains, seeing usage
situations from different perspectives, and managing
tradeoffs to reach usable and effective design outcomes
[5,6].

2. What are scenarios?

Computers are more than just functionality. They
unavoidably restructure human activities, creating new
possibilities as well as new difficulties. Conversely, each
context in which humans experience and act provides
detailed constraint for the development and application of
computer technologies. In analyzing and designing
systems and software we need better means to talk about
how they may transform and/or be constrained by the
contexts of user activity: this is the only way we can hope
to attain control over the ÒmaterialsÓ of design. A direct
approach is to explicitly envision and document typical
.00 (c) 1999 IEEE 1

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
and significant user activities early and continuingly in the
development process. Such descriptions, often called
Òscenarios,Ó support reasoning about situations of use,
even before those situations are actually created.

Scenarios are stories. They are stories about people
and their activities. For example, an accountant wishes to
open a folder on the system desktop in order to access a
memo on budgets. However, the folder is covered up by a
budget spreadsheet that the accountant wishes to refer to
while reading the memo. The spreadsheet is so large that
it nearly fills the display. The accountant pauses for
several seconds, resizes the spreadsheet, moves it partially
out of the display, opens the folder, opens the memo,
resizes and repositions the memo, and continues working.

This is about as mundane a work scenario as one could
imagine. Yet even this scenario specifies window
management and application switching functionality
vividly and pointedly: People need to coordinate
information sources, to compare, copy, and integrate data
from multiple applications; displays inevitably get
cluttered; people need to find and rearrange windows in the
display. Scenarios highlight goals suggested by the
appearance and behavior of the system, what people try to
do with the system, what procedures are adopted, not
adopted, carried out successfully or erroneously, and what
interpretations people make of what happens to them. If
the accountant scenario is typical of what people want to
do, it substantively constrains design approaches to
window management and switching.

Scenarios have characteristic elements [26]. They
include or presuppose a setting: The accountant scenario
explicitly describes a starting state for the described
episode; the relative positions of the folder and
spreadsheet, and the presence of the accountant. The
scenario implies further setting elements by identifying
the person as an accountant, and the work objects as
budgets and memos.

Scenarios also include agents or actors: The accountant
is the only agent in this example, but it is typical of
human activities to include several to many agents. Each
agent or actor typically has goals or objectives. These are
changes that the agent wishes to achieve in the
circumstances of the setting. Every scenario involves at
least one agent and at least one goal. When more than
one agent or goal is involved, they may be differentially
prominent in the scenario. Often one goal is the defining
goal of a scenario, the answer to the question Òwhy did
this story happen?Ó Similarly, one agent might be the
principal actor, the answer to the question Òwho is this
story about?Ó

In the accountant scenario, the defining goal is
displaying the memo in such a way that both the memo
and budget can be examined. A subgoal is opening the
folder in which the memo is located, and a further subgoal
is moving the budget to allow the folder to be opened.

Scenarios have a plot; they include sequences of actions
and events, things that actors do, things that happen to
them, changes in the circumstances of the setting, and so
0-7695-0001-3/99 $10
forth. Particular actions and events can facilitate,
obstruct, or be irrelevant to given goals. Resizing the
spreadsheet and moving it out of the display are actions
that facilitate the goal of opening the folder. Resizing and
repositioning the memo are actions that facilitate the goal
of displaying the memo so that it can be examined with
the budget. Pausing is an action that is irrelevant to any
goal, though it suggests that the accountants goal-oriented
actions were not completely fluent. Notably, actions and
events can often change the goals Ñ even the defining
goal Ñ of a scenario.

Representing the use of a system or application with a
set of user interaction scenarios makes that use explicit,
and in doing so orients design and analysis toward a
broader view of computers. It can help designers and
analysts to focus attention on the assumptions about
people and their tasks that are implicit in systems and
applications. Scenario representations can be elaborated as
prototypes, through the use of storyboard, video, and rapid
prototyping tools. They are the minimal contexts for
developing user-oriented design rationale: a given design
decision can be evaluated and documented in terms of its
specific consequences within particular scenarios.
Scenarios and the elements of scenario-based design
rationale can be generalized and abstracted using theories
of human activity, enabling the cumulation and
development of knowledge attained in the course of
design. Thus, scenarios can provide a framework for a
design-based science of human-computer interaction.

In the balance of this chapter, we review five of key
challenges for design methods and illustrate for each the
corresponding response of scenario-based design.

3. Challenge: Design action competes
with reflection

Technical professionals are intelligent people
performing complex and open-ended tasks. They want to
reflect on their activities, and they routinely do reflect on
their activities. However, people take pride not only in
what they know and learn, but in what they can do and in
what they actually produce. There is a fundamental
tension between thinking and doing: thinking impedes
progress in doing, and doing obstructs thinking.
Sometimes this conflict is quite sharp, as when one must
stop and think before taking another step. But frequently
it is more a matter of trading off priorities.

Donald Sch�n [28,29] has discussed this conflict
extensively in his books on reflective practice. For
example, he analyzes a coach reacting to an architecture
studentÕs design concept for a school building; the design
includes a spiral ramp intended to maintain openness
while breaking up lines of sight (she calls the idea Òa
GuggenheimÓ):

Ò... when I visited open schools, the one thing they
complained about was the warehouse quality Ñ of
being able to see for miles. It [the ramp] would
.00 (c) 1999 IEEE 2

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
visually and acoustically break up the volume.Ó [29,
page 129]
The coach feels that she needs to explore and develop

her concept more thoroughly, noting that a ramp has
thickness and that this will limit her plans to use the
space underneath the ramp; he urges her to draw sections.
However, he does not bother to justify this advice to the
student, to allow her to see the rationale behind his advice;
as Sch�n puts it, he does not reveal Òthe meanings
underlying his questionsÓ [29, page 132]. Sch�n regards
this as a hopeless confrontation in which no progress can
be made on the particular design project, or on the larger
project of understanding how to design. Both the student
and the coach are willing to act publicly and to share
actions, but do not reflect enough on their own and one
anotherÕs values and objectives, and on their interpersonal
dynamics.

Reflection is not always comfortable; it forces one to
consider oneÕs own competence, to open oneself to the
possibility of being wrong. As Sch�n [29] put it,

ÒThe interactions I have suggested emphasize
surfacing private attributions for public testing,
giving directly observable data for oneÕs judgments,
revealing the private dilemmas with which one is
grappling, actively exploring the otherÕs meaning,
and inviting the otherÕs confrontation of oneÕs
own.Ó (p. 141)
In general, people do not like to make themselves self-

aware of their own roles as actors in situations; indeed,
being Òobjectively self-awareÓ impairs performance of
nonroutine tasks [14] Ñ like designing software!

4. Scenarios evoke reflection in design

Designers do try to create opportunities for their own
reflection. They organize design review meetings in
which the whole team works through a set of
requirements, a progress report, or a specification. It is
also common to build early prototypes to verify and refine
design requirements; one can directly observe prospective
users interacting with such a prototype to make a
formative evaluation [30] of the design. These activities
can facilitate the identification and integration of different
perspectives; they can raise concrete and detailed design
issues to guide further work. In this way they help
designers to reflect on the work theyÕve already done.
However, they do not evoke reflection in the context of
doing design. Though design reviews and formative
evaluations are reflective activities, they are ancillary
activities that must be coordinated with design itself.
Prototyping is directed at building and testing software
that embodies a design, not on thinking about the design
as it is produced.

Constructing scenarios of use inescapably evokes
reflection in the context of design. Consider the scenario
in Figure 1: it succinctly and concretely conveys a vision
of the system, in this case a vision of student-directed,
multimedia instruction. It is a coherent and concrete
0-7695-0001-3/99 $10
vision, not an abstract goal or a list of requirements.
Elements of the envisioned system appear in the scenario
embedded in the user interactions that will make them
meaningful to the user Ñ perhaps revelatory, perhaps
cryptic, but definitely more than just technological
capabilities. For example, the role of natural language
query is exemplified as a means of locating further case
studies that illustrate the principles of harmonic motion.

Harry is interested bridge failures; as a child, he saw a
small bridge collapse when its footings were undermined
after a heavy rainfall. He opens the case study of the
Tacoma Narrows Bridge and requests to see the film of its
collapse. He is stunned to see the bridge first sway, then
ripple, and ultimately lurch apart. He quickly replays the
film, and then opens the associated course module on
harmonic motion. He browses the material (without
doing the exercises), saves the film clip in his workbook
with a speech annotation, and then enters a natural
language query to find pointers to other physical
manifestations of harmonic motion. He moves on to a
case study involving flutes and piccolos.

Figure 1: A usage scenario for a multimedia
education project

The scenario emphasizes and explores goals that the
user may adopt and pursue, such as watching the film
clips twice, or skipping the exercises. Some of these
goals are opportunistic, such as investigating the Tacoma
Narrows collapse because of experience with a totally
unrelated bridge collapse, or deciding to branch from
bridge failures to flutes. The scenario implicitly
articulates the usage situation from multiple perspectives:
the student stores and annotates a video clip with speech,
raising specific requirements for user interface tools and
presentation as well as for particular data structures and
memory. The scenario impels the designer to integrate
the consideration of such system requirements with
consideration of the motivational and cognitive issues in
education that underlie the userÕs actions and experiences.

The scenario concretely embodies a partial view of the
design, and thereby exposes the design to critique. In this
sense, the scenario as an object can function much like a
ÒsoftÓ prototype (though, as we have suggested, the
process of designing a scenario more strongly evokes
reflection). Indeed, scenarios have been found to be
extremely useful as focal objects in both design reviews
and formative evaluations [7,13,21]. The scenario
exposes not only the functionality of the system, but
specific claims about how the user will access that
functionality and what the user will experience in doing
so.

Sch�n [28, page 67-68] drew an important contrast
between merely creating or identifying elements of the
problem context, and Ògiving them reason.Ó Practitioners,
as experts, will often have a category or a label with
.00 (c) 1999 IEEE 3

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
which to ÒunderstandÓ a situation. In reality, this simple
step often establishes an insurmountable obstacle to
achieving a real understanding. ÒWhen someone reflects-
in-action, he becomes a researcher in a practice context.Ó
(p. 68) A state of subjective self-awareness is encouraged
by designing scenarios because the focus of attention is
the activities and experiences of the prospective user.

5. Challenge: Design situations are fluid

Design analysis is always indeterminate, because
design changes the world within which people act and
experience. The rapid evolution of spreadsheet software in
the 1980s does not indicate a failure in the original
requirements analysis for VisiCalc, but rather suggests the
extent to which the original spreadsheet programs altered
the work situations in which these program were used [9].
Requirements always change [3]. When designs
incorporate rapidly-evolving technologies, requirements
change even more rapidly. The more successful, the more
widely-adopted and the more impactful a design is, the less
possible it will be to determine its correct design
requirements. And in any case, refinements in software
technology and new perceived opportunities and
requirements propel a new generation of designs every 2-3
years.

There is a tendency to think of the indeterminacies of
technology development in positive terms: the world is
getting better, albeit sometimes in ways we didnÕt expect.
Recently this positive attitude has been supplemented
with growing acknowledgment of potential negative
consequences, such as pollution of groundwater and the
deterioration of the atmosphere. But both these emphases
underanalyze the extent to which design, and especially the
design of new technology, undermines the stability of the
world. Sch�n [27], for example, noted that in our era
technology development constantly erodes the managerÕs
concept of Òthe business IÕm inÓ (p. 195) and a workerÕs
notion of the special skill he or she possesses; it erodes
the traditional staging of life into education followed by
steady practice. Even writers, such as McLuhan [23] who
revel in the prospect of Òlearning a living,Ó agree about
the magnitude of this instability.

The instability of design situations originates inside
design teams as well as outside. As a project goes
forward, its funding may be threatened or restructured;
various stakeholders or team members may change their
interests or priorities, or may even leave the team. Others
with unknown interests and priorities may join. This
creates a chronic need for education and consensus-building
to ensure that there is agreement as to what the
requirements are at any given point in time.

Sch�n [27] stressed that in the face of great instability,
people create illusions of stability to manage their own
uncertainties and potentially disturbing perceptions. This
is consistent with a substantial body of social psychology
research: People create logically tidy interpretations of
their experience, even if they must ÒadjustÓ their actual
0-7695-0001-3/99 $10
perceptions in order to do this [25]. People protect their
interpretations by selectively reconstructing their own
experience [15]. And the more reconstructionist effort
people must expend to maintain an interpretation, the
more ardently it is held, even in the face of incontestable
disconfirmation [16].

Given the human bias for stability, we should not be
surprised by the persistence of the attitude that design
problems can be planfully decomposed into routine
subproblems, that scientific principles can be
mechanically applied to expose and manage the underlying
orderliness of design problems. From the standpoint of
the psychology of designers and managers, it could
conceivably become even stronger as it becomes more
clearly inappropriate [17]. These dysfunctional beliefs
about design would not be such a problem if they could
only lead to standstill. The potentially dangerous aspect
is that they can lead to ÒsuccessÓ in accomplishing the
wrong things. Designers almost always design
something. If their need for stability induces them to
prematurely close their designs, to cease reflecting and
critiquing, to declare victory, they may produce a solution
for requirements that no longer exist.

6. Scenarios are at once concrete and
flexible

To manage an ambiguous and dynamic situation, one
must be concrete but flexible. One must be concrete just
to avoid being swallowed by the indeterminacies; one
must be flexible to avoid being captured by a false step.
Systematic decomposition is a traditional approach to
managing ambiguity, but it does not afford flexibility.
Instead one ends up with a set of concrete subsolutions,
each of which is fully specified. Unfortunately, by the
time the set of subsolutions is specified, the requirements
often have changed.

Scenarios of use reconcile concreteness and flexibility.
They are concrete in the sense that they simultaneously
fix an interpretation of the design situation and offer a
specific solution: the scenario in Figure 1 specifies a
particular usage experience that could be prototyped and
tested. At the same time the scenario is flexible,
deliberately incomplete and easily revised or elaborated: in
a few minutes, a piece of the scenario could be re-written
(e.g., perhaps the associated module opens automatically)
or elaborated (e.g., the module may be opened by
following a Òrelated materialsÓ tag attached to the film
clip).

A scenario provides a concrete envisionment of a
design solution, but can be couched at many levels of
detail. Initial scenarios are typically very rough. They
specify a system design by specifying the tasks users can
or must carry out, but without committing to the lower-
level details of precisely how the tasks will be carried out
or how the system will enable the functionality for those
tasks. The narrative in Figure 1 is at an intermediate
.00 (c) 1999 IEEE 4

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
level, with some detail regarding task flow, but not at the
level of individual user-system interactions.

Thus scenarios provide a stable foundation for action-
oriented reflection. By being both concrete and rough,
they make explicit the design goal of specifying tasks and
functions in greater detail. But they do this by opening
up the issue of how to do this detail design, instead of
closing it out prematurely. Scenarios allow designers to
provisionally construct a space of user tasks despite the
instability in requirements originating from the context of
technology development. Scenarios are particularly
appropriate for managing the instability originating inside
design teams: They are broadly accessible to various
stakeholders and team members, unlike artifact-oriented
decompositions such as functional specifications.

The notion that scenarios of use are an appropriately
concrete but rough design object extends several earlier
analyses. For example, Sch�n [28, page 277-279]
emphasized that effective reflection must be tightly
coupled to action: the analysis need not be complete and
consistent, it need only guide a restructuring of the current
situation that can produce new design actions or new
insights. His cases are drawn from design domains for
which there are rich languages to allow designers to
quickly create and explore situations. Scenarios are such a
language for the design of human-computer interactions.

In an earlier book, Sch�n [27, page 41] argued that
decomposition is useful chiefly through the side-effects of
eliciting and focusing concrete action, and thereby
reducing uncertainty. But he warned that the resultant
decomposition can ÒstrangleÓ innovation. Ackoff [1]
similarly developed the notion of Òidealized designÓ: a
process of planning Òthe system with which the designers
would replace the existing system now if they were free to
do so.Ó(p. 191) He argued that such a process can increase
participation among stakeholders, mobilize participants
with respect to the project, expand the concept of what is
feasible, increase both creativity and the scope of human
and organizational consequences that are considered in the
design process; an idealized design is really just a vehicle
for focusing the articulation of possibilities and the
discussion of their consequences.

7. Challenge: Design moves have many
consequences

Every element of a design, every move that a designer
makes, has a variety of potential consequences. In their
work on violin design, the Catgut Society found that
additional rib holes were needed in their new treble violin
to pitch the instrument high enough and yet maintain the
neck length for fingering. This design move had the
intended consequences, but also forced the designers to
consider stronger materials for the ribs, and ultimately to
use aluminum instead of wood. However the aluminum
ribs caused a nasal quality in the lower strings, forcing the
designers to reconsider a new wooden rib design Ñ ribs so
0-7695-0001-3/99 $10
thin (0.7 mm) that the designers believed on analytical
grounds that they would collapse. A typical complication
in this design case is that the various consequences
belonged to different stakeholders: A fingerboard that is
too short is a problem for the musician. A very thin
wooden rib is a problem for the instrument maker. A
nasal tone is a problem for the musician and listener [19].

Sch�n [28, page 101] sees design as a ÒconversationÓ
with a situation comprised of many interdependent
elements. The designer makes moves and then ÒlistensÓ
to the design situation to understand their consequences:

ÒIn the designerÕs conversation with the materials of
his design, he can never make a move which has
only the effects intended for it. His materials are
continually talking back to him, causing him to
apprehend unanticipated problems and potentials.Ó
Thus, the Catgut group made the move of employing

aluminum ribs and then noticed the unanticipated problem
of a nasal tone in the lower strings. When a move
produces unexpected consequences, and particularly when
it produces undesirable consequences, the designer
articulates Òthe theory implicit in the move, criticizes it,
restructures it, and tests the new theory by inventing a
move consistent with itÓ [28, page 155].

Sch�nÕs approach to managing the interdependencies
within a design situation by treating design as inquiry
raises several questions. What directs the designer to
investigate various types of consequences, to listen for
various types of backtalk? How are different types and
sources of backtalk integrated in the designerÕs restructured
design theory? The moves for the treble violin had
various consequences. The Catgut group effectively
integrated these in their subsequent design work, but how
did they do that and, more generally, how can we support
outcomes like that? Designers need a language for this
conversation and they need techniques for managing the
consequences.

8. Any scenario has many views

Scenarios of use are multifarious design objects; they
can describe designs at multiple levels of detail and with
respect to multiple perspectives. The scenario in Figure 1
provides a high-level task view, but it easily could be
elaborated with respect to the detailed moment-to-moment
thoughts and experiences of the user in order to provide a
more detailed cognitive view, or the userÕs moment-to-
moment actions to provide a more detailed functional
view. Alternatively, it could be elaborated in terms of
hardware and software components that could implement
the envisioned functionality in order to provide a system
view (use cases play this role in object-oriented software
engineering [20,32]. Each of these variations in
resolution and perspective is a permutation of a single
underlying use scenario. Indeed, the permutations are
integrated through their roles as complementary views of
the same design object.
.00 (c) 1999 IEEE 5

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Scenarios can leave implicit the underlying causal
relationships among the entities in a situation of use. In
Figure 1, the envisioned speech annotation capability
allows the user to add a personal comment without the
overhead of opening an editor and typing text. However,
the annotation is noncoded, and thus cannot be edited
symbolically. These tradeoffs are important to the
scenario, but often it is enough to imply them (this is an
aspect of the roughness property discussed above).

There are times, however, when it is useful to make
these relationships explicit. For example, in another
situation Harry may wish to collect and revisit the set of
film clips he viewed and annotated as Òbreakthroughs in
forensic engineering.Ó Unfortunately, his noncoded voice
annotations cannot be searched by string. Thus, this new
scenario would end in failure. To understand, address, and
track the variety of desirable and undesirable consequences
of the original annotation design move, the designer
might want to make explicit the relevant causal
relationships in the scenario. Doing so provides yet
another view of the envisioned situation as shown in
Figure 2.

A video clip of the Tacoma Narrows Bridge collapse
provides an engaging introduction to a course

module on harmonic motion
evokes curiosity and self-initiated learner

exploration
but may not sufficiently motivate a learners to

attempt the course module
Speech annotation of a saved video clip

allows easy attachment of personal metadata
but does not support indexing or search of

metadata

Figure 2: A view of the multimedia education
scenario sets of consequences associated with
the orientational video clip and the speech
annotation capability.

Scenarios can help designers move toward consequences
of differing types. For example, the data structures for the
userÕs workbook might differentiate between annotated and
non-annotated items, allowing annotated items to be
retrieved and browsed as a subset. This would not allow
Harry to directly retrieve the set of items with a particular
annotation, but it would still simplify the search.
Alternatively, the search problem might be addressed
directly by speech recognition or audio matching, or by
including the option of text annotation. Each of these
alternatives would entrain different elaborations for both
the annotation scenario in Figure 1 and the search scenario
discussed above. These elaborations could then be
explored for further consequences and interdependencies.

Thus, one would want to pursue the usability
consequences of the various elaborations, for example, the
frustrations of a 90% recognition accuracy. One would
0-7695-0001-3/99 $10
want to investigate tradeoffs and interdependencies among
consequences of different types: The speech recognition
capability might resolve the search scenario, but it might
entail prohibitive costs in memory and processing.
Including an option of text annotation might change the
annotation task in a subtle way, the user would be aware
when creating the annotations that they will later be
retrieval keys. Providing a finely articulated data structure
for the userÕs workbook enables flexible organization and
retrieval, but at the cost of complexity in the underlying
database.

Using scenarios in this way makes them an extremely
powerful design representation. They allow the designer
the flexibility to develop some use scenarios in great
detail, for example the ones that describe the core
application functionality or the critical usability
challenges, while merely sketching other less problematic
scenarios. At the same time, they allow the designer to
switch among scenario perspectives and to directly
integrate, for example, usability views with system and
software views. Such a flexible and integrative design
object is precisely what designers need to manage the
nexus of consequences entrained by their design moves.

9. Challenge: Technical knowledge lags
technical design

Sch�n [28, page 42-44] emphasized the ÒdilemmaÓ of
rigor or relevance throughout the professions. He
describes the Òhigh, hard groundÓ where practitioners can
make use of systematic methods and scientific theories,
but can only address problems of relatively limited
importance to clients or to society. He contrasts this to
the Òswampy lowland [of] situations ... incapable of
technical solutionÓ (p. 42); here the practitioner can
confront the greatest human concerns, but only by
compromising on technical rigor. The design and
development of technology aspires to occupy the high,
hard ground, to apply the current state of technical
knowledge systematically, to reduce difficult problems to
mere corollaries Ñ and of course to bask in the confidence
that deductive science confers both on its practitioners and
the recipients of their efforts: science is certainty. But at
the same time, technology design and development is
inevitably driven to pursue novelty and innovation, and
thereby to slip continuingly into the swampy unknown
regions.

Sch�n [28, page 16, 42-44] discusses the field of
operations research as an example. During World War II,
operations research developed from the successful
application of mathematics to modeling battle situations
like submarine search. After the war, the field expanded
its interests to management problems in general, and
successfully produced effective formal models for
relatively bounded problems like managing capital
equipment replacement or investment portfolios.
However, it generally failed in complex, less well-defined
.00 (c) 1999 IEEE 6

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
areas like business management, housing policy, or
criminal justice. Remarkably, the response of the field to
this was largely to focus attention on the relatively simple
problems that suited the mathematical models.

Russell Ackoff, one of the founders of operations
research, lamented the inability and disinterest of the field
in addressing the Òturbulent environmentsÓ of the real
world [2, page 94]:

Òmanagers are not confronted with problems that are
independent of each other, but with dynamic
situations that consist of complex systems of
changing problems that interact with each other. I
call such situations messes. Problems are
abstractions extracted from messes by analysis; they
are to messes as atoms are to tables and charts ...
Managers do not solve problems: they manage
messes.Ó [2, page 99-100]
This quote evokes the story in which a man loses his

car keys one night, but decides to search for them not
where they were dropped, but under a nearby streetlight
because the light is so much better. The man will not
find his keys, and Ackoff analogously worried that solving
operations research problems will not lead to Òdesigning a
desirable future and inventing ways of bringing it about.Ó
[2, page 100].

Our own experience in instructional design illustrates
this pattern very well. Modern instructional design
blossomed in the 1960s and subsequently in response to
rapidly expanding needs for technical training [31]. The
basic model that emerged and guided this work was based
on hierarchical task analysis: the overall instructional
objectives were successively decomposed into enabling
objectives, objectives that enabled the enabling objectives,
and so on; at the lowest level, these subskills were
described, drilled and tested [18]. The vision of this
Òsystems approachÓ model is that the instructional
designer carefully orchestrates a series of well-controlled
instructional events that build up the learning hierarchy
within the studentÕs mind.

At the time this model was widely adopted, three
decades of research on learning and education had already
made it clear that no one ever learns this way. People can
learn in spite of such an approach, but only because they
are so adaptable. The whole enterprise seems to have been
configured to ignore the most difficult issues of learning
and education and to reliably produce mediocre results. In
the 1970s and early 1980s, this approach was pervasive in
the design of instruction for computer systems and
applications, and was found to be particularly ineffective
for non-programmers. Unfortunately, non-programmers
were the most rapidly growing segment of computer users
during those years. It turned out to be possible to design
effective instruction for these users, by studying and
supporting actual situations of learning, instead of merely
asserting the problem and the solution in a vacuum of
systematic decomposition [4].

The critical elements for an effective learning
experience are activity and discovery that can be recognized
0-7695-0001-3/99 $10
as meaningful by the learner and as supporting current
personal interests, needs, and objectives of the learner.
People want to learn in a realistic context; they want to be
able to use what they already know to critically evaluate
new knowledge and skills they encounter. These themes
are not new discoveries, they had been widely developed
by psychologists like Jerome Bruner, John Dewey and
Jean Piaget and were well-known in 1970. But they do
not admit of simple assembly-line instructional designs.
Taking them seriously makes instructional design a very
open-ended process; it guarantees little about either the
types of design analysis that will be required in a given
case or the types of instructional designs that will emerge
as appropriate and effective in a given case.

10. Scenarios can be abstracted and
categorized

Though technical design cannot escape Sch�n Õs
swamp, designers need to extract lessons from their
experience to guide their work and improve their practice.
If technical knowledge lags design, then designers
themselves must formulate what they learn Ñ perhaps
becoming creators of technical knowledge more than
consumers of it. The Catgut Society is a beacon for this:
At the start of their project there was little relevant
technical knowledge; physicists had a good understanding
of vibrating strings, but no significant understanding of
vibrating systems composed of strings vibrating across air
cavities partitioned by wooden ribs and bounded by
irregularly-shaped wooden boxes. The Catgut work in the
end has substantially advanced technical knowledge of
complex acoustical systems: the design work created an
ÒislandÓ of hard ground in the swamp of real problems.

Scenarios keep the designer of computer systems and
applications in the swamp, but by their very nature also
provide scaffolding to get a view of the design situation
from a bit higher up. The roughness of scenarios is, after
all, abstractness: To the extent that a scenario is rough, it
is a description of a space of particular user interactions.
This is analogous to the way in which a jazz score is a
rough description of the many ways in which that piece of
music might be performed. Documenting and explaining
a scenario provides an account of a class of possible
situations; this creates a generalized design object that can
be immediately employed in further design work by being
elaborated in various ways. For example, the scenario in
Figure 1 could guide the design of a multitude of
information systems.

But this is only the most primitive technique for
developing design knowledge with scenarios. Scenarios
exemplify particular themes and concerns in work and
activity situations. Earlier we discussed two scenario for a
multimedia education system. In one (Figure 1), the user
is at first opportunistically exploring an information
structure, but eventually adopts a particular interest that
guides his exploration. In the other, the user wishes to
.00 (c) 1999 IEEE 7

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
search and organize information that has previously been
browsed. Described at this level of generality, these are
not scenarios unique to multimedia education systems, or
even to computers. They are general patterns for how
people work with information. Therefore, it is likely that
some of the lessons learned in managing the
Òopportunistic explorationÓ pattern or the Òsearching under
a descriptionÓ pattern in the design of any given situation
might be applicable in the subsequent design of other
situations. Such a taxonomy of scenarios provides a
framework for developing technical design knowledge.

Scenarios can also be classified in terms of the causal
relations they comprise. In Figure 1, for example,
providing speech annotation simplifies the actions needed
to personalize a piece of information. In this causal
relation, the consequence is the simplification of
organizing and categorizing Ñ a general desideratum in
designing interactive systems. Generalizing the relation
in this way allows the feature associated with the
consequence (in this example, speech annotation) to be
understood as a potential means for that consequence, and
employed to that end in other design contexts. There is of
course no guarantee that the generalization is correct, that
can only be settled by trying to use it and succeeding or
failing. The point is that such candidate generalizations
can be developed from scenario descriptions.

The generalization of the causal relations comprising
scenarios can also be carried out across features: Speech
annotation of data helps the user create a personalized
view. But this relation holds independent of whether the
data is annotated by speech, by text or by handwriting.
Understanding the relation more generally allows designers
to consider any medium for annotation as a potential
means of facilitating a personalized data view.

Scenarios can also be taken as exemplars of model
scenarios; for example, Figure 1 illustrates a model of
opportunistic control. Harry pursues the link from
bridges to piccolos, because that is the aspect of the
information that interests him. The system was designed
to support this style of use; to that extent it embodies a
model of opportunistic control. Other models are possible
of course; many instructional systems would require a
student to complete the current module before allowing a
branch to related material in some other module. Seeing
the scenario in Figure 1 as an opportunistic control
scenario allows the designer to benefit from prior
knowledge pertaining to this model and to contribute
further design knowledge of the model based on the current
project.

Designers are not just making things; they are making
sense. Particularly in technical design it is not enough for
them to master a craft practice, for there is no stable craft
practice in design domains like computer systems and
applications. The turbulence of technology development
leaves little unchanged, but particularly in the short run,
leaves little resolved. We may expect that conventional
science will eventually systematize technical knowledge in
new domains, but we also know that it typically will do
0-7695-0001-3/99 $10
so after the wave of technological innovation has swept
onwards. The challenge for designers is to learn as they
go.

11. Challenge: External factors constrain
design

Designers must have constraints; there are just too
many things that might be designed. Requirements, if
they can be identified, are clearly the best source of
constraints because they indicate what sort of design work
is needed. But there are many other sources of constraints.
The current state of technology development makes some
solutions impossible and others irresistible: On the one
hand, designers cannot use technology that does not yet
exist, though their work often drives technology
development toward possibilities that are nearly within
reach. On the other hand, designers, like everyone else,
are caught up in a technological zeitgeist that biases them
toward making use of the latest gadgets and gizmos. In
addition, designers are often biased toward deploying
technologies they have used before, even when they are
aware of limitations in these technologies.

Earlier we referred to our work in instructional design.
In this domain, we found that many designers continued to
use the systems approach even though they knew that it
was inappropriate for their users. They did this because
the approach ensured a uniformly structured,
comprehensive result that other instructional designers
could recognize as well-executed. This aligned the
designer with others employing the same model, creating
a professional community. The many difficulties the
approach created for learners were viewed as merely part of
the research agenda, although in fact few of these
problems received adequate attention.

As Churchman [12] observes, many systems are
designed to serve the ÒwrongÓ client, for example,
hospitals are designed to serve doctors, not patients. In
time, of course, a system designed to serve the wrong
client will poorly serve all clients. This is similar to the
confusion of ÒcustomersÓ and ÒusersÓ in identifying design
requirements. However, by far the worst such confusion
is entrained by solving tidy problems instead of addressing
the real problem. In the systems approach to instructional
design, the mistaken client is the instructional designer, or
perhaps the instructional design firm; the underlying
intent is to streamline the production of instruction, not
to improve its utility.

Many constraints in design originate in the
organizational structures within which design work is
embedded. Only certain types of assumptions and
arguments are acceptable in the business cases that
underwrite design projects. For example, well into the
1980s it was widely believed that executives would never
use a keyboard. This belief was based on a marketing
stereotype of executive disdain for clerical tasks, yet it
constrained many technical strategies for the development
.00 (c) 1999 IEEE 8

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
of computer hardware and software in that period.
Ultimately, appropriate hardware and software were
designed for executives, as one can easily verify in the
number of notebook computers in use in the first class
cabin of an airplane. Apparently, the issue had nothing to
do with typing per se, but with other aspects of use
situations.

Power structures and stereotypes play assorted other
roles. Design projects are often chartered with a priori
commitments to follow a strict decompositional approach:
which makes them easy to manage, but unlikely to
succeed with respect to serving the needs of users and
clients. In such a context, designers must struggle not
only with technical challenges but with an impossible
methodology. Schedules and resources are often assigned
in ways that create on-going conflicts between system
designers and usability engineers: the usability engineers
need to evaluate scenarios and prototypes at every stage of
system development, but if schedules and resources do not
provide for this, the usability work can conflict with
development work.

In all these examples of external constraints, the
designers can become distracted by ancillary or even
perverse factors and lose sight of what is essential in the
design project, namely, the needs and concerns of users.
The designer can become ÒunsituatedÓ with respect to the
real design situation, which is not the marketing
managerÕs projections, or the instructional designerÕs list
of steps, or the software engineerÕs system decomposition.
The real design situation is the situation that will be
experienced by the user, and designers need to stay focused
on that.

12. Scenarios promote work-orientation

Scenarios are work-oriented design objects. They
describe systems in terms of the work that users will try
to do when they use those systems. A design process in
which scenarios are employed as a central representation
will ipso facto remain focused on the needs and concerns
of users [8].

One can increase the effectiveness of scenarios of use as
work-oriented design objects by couching them at an
appropriate level and by directly involving users in
creating them. A personÕs experience of working with a
system revolves around understanding and developing task
goals, responding opportunistically to intriguing system
events, and planning, carrying out and evaluating courses
of action. People do not focus on the very low-level
enabling actions and events that comprise these
experiences, such as keypresses, beeps, mouse gestures
and clicks, display updates, and font size. Quite often
people are only aware that they are seeing, hearing and
doing these things when something goes amiss. A
heuristic for writing scenarios focused on the clientÕs
needs and concerns is to initially couch them at the Òbasic
0-7695-0001-3/99 $10
taskÓ level Ñ the level at which people experience their
own activity [10].

Ackoff [1,2] argued that the indeterminacy of design
situations made it imperative that all stakeholders
participate directly. Assuming that stakeholders can
represent their own interests, this proposal pretty much
guarantees an adequate focus on clientÕs needs and
concerns. However, it may not be the case that all
stakeholders can represent their interests: they will be
trying to evaluate their needs as transformed by new
technologies that they may not understand. Moreover, it
is not always feasible to include all stakeholders; in the
design of a new spreadsheet application for personal
computers there might be several million stakeholders.

AckoffÕs ideas have been refined through various
developments in participatory design over the past two
decades. One technique is to include representative clients
on the design team, instead of imagining that every client
can participate directly. Of course client representatives
on participatory design teams are not representative
clients; by definition only clients not on the design team
can be truly representative. However, given this dilemma,
ÒrepresentativeÓ sampling may be a reasonable heuristic.
Clients can also be helped to better represent their
interests in design collaborations by taking part in
facilitated demonstrations of possible scenarios of use
[22,24].

13. Some final words

Our objective in this paper was to motivate and
preview a framework for managing design that
accommodates the nature of design problem solving as it
occurs in the context of technology development. Our
approach tries to facilitate flexible design actions informed
by reflection on multiple levels and from multiple
perspectives, including direct collaboration among team
members. We argue that making scenarios of use a focal
design object serves this variety of purposes.

Figure 3 summarizes the five issues and corresponding
approaches we discussed. The key issue is encouraging,
supporting, and productively directing reflection that is
closely and effectively integrated with action in the design
process. Designers want to reflect, but they know from
experience that it is impossible to fathom all the
consequences and interdependencies. At the same time,
they know that they can act and immediately see progress
toward a solution, or at the least feel that they have
eliminated some possibilities. Faced with this choice, it
is always more attractive in the short-term to act. In our
work on instructional design, we noticed an analogous
conflict in the activities of learners that we called the
Òproduction paradoxÓ [4]: People know that they must
learn new concepts and skills in order to be able to do new
sorts of things, however, they also know that by just
trying things out they can see and feel progress, learning
as they accomplish something meaningful.
.00 (c) 1999 IEEE 9

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
 Scenario-Based
 Design

Action versus Reflection

vivid
descriptions of

end-user experiences
evoke reflection about

design issues

Design Problem Fluidity
scenarios
concretely fix an
interpretation and a
solution, but are open-ended
and easily revised

D
es

ig
n

M
ov

es
 H

av
e

M
an

y
E

ffe
ct

s

scenarios can be written
at multiple levels, from
many perspectives,
and for many
purposes

Scientific Knowledge Lags Design Application

scenarios
can be abstracted

and categorized to help
design knowledge cumulate
across problem instances

E
xternal Factors C

onstrain D
esign

scenarios anchor design
discussion in work,

supporting participation
among stakeholders

and appropriate
design outcomes

Figure 3: Challenges and approaches in scenario-based design
Scenarios of use help designers manage the production
paradox. Creating and elaborating scenarios is concrete
design work; the designer sees and feels progress toward a
design result. At the same time, scenarios are concrete
hypotheses about what the people using the design result
will do, think and experience. Thus, in Sch�n Õs [28]
terminology, scenarios evoke reflection-in-action. Sch�n
stressed the importance for designers to experience the
Òfelt-pathÓ of the people interacting with their designs. A
scenario guarantees this experience: it presents a potential
felt-path to the designer; it is a medium through which
designers can envision and explore alternative felt-paths.

Scenarios evoke effective reflection in a way that
addresses some of the most difficult properties of design.
The fluidity of design situations demands that solutions be
provisional, that commitments be tentative; yet if every
design decision is suspended, the result will be a design
space, not a design. A scenario is a concrete design
proposal that a designer can evaluate and develop, but is
also rough in that it can be easily altered and allows many
details to be deferred.

The interconnectedness of design decisions, and the
variety and extent of any given decisionÕs consequences,
0-7695-0001-3/99 $10
requires designers to consider their decisions from many
different perspectives: software architecture, marketing,
ease of learning, production cost, usability, and so forth.
It requires them to consider their decisions at many
different levels of detail in the proposed solutions.
Scenarios of use serve as a concrete context for developing
and integrating these different perspectives and levels.

Technical innovation is driven to those regions where
technical knowledge is thin. Designers often have little
more than craft practices to guide them in these regions.
But if we see design as inherently a process of inquiry,
this lag between codified knowledge and practice is
transformed into a significant opportunity. Design can be
a paradigm for creating and cumulating technical
knowledge. Scenarios provide a broad rubric for
organizing and generalizing knowledge attained in design
contexts. They can be abstracted and categorized in
various ways, and then employed in new design problems.

Like every human activity, design work occurs in
many overlapping social contexts: technical societies,
corporations, states of technology development,
industries, and so forth. Each context introduces
constraints on possible methods and solutions.
.00 (c) 1999 IEEE 10

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Sometimes these are constructive and appropriate, often
they are neither. The cacophony of these social contexts
and constraints can leave designers unsituated with respect
to their primary source of constraint Ñ the needs and
concerns of the people who will use the system being
designed. Scenarios keep the whole enterprise focused on
past and future situations of use, they help keep designers
focused on what matters most.

References

[1] Ackoff, R.L. ÒResurrecting the future of operations
researchÓ Journal of the Operations Research Society,
30(3), 1979, pp. 189-199.

[2] Ackoff, R.L. ÒThe future of operations research is pastÓ,
Journal of the Operations Research Society, 30(2), 1979,
pp. 93-104.

[3] Brooks, F. The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley, Reading, MA, Anniversary
Edition 1995 (originally 1975).

[4] Carroll, J. M. The Nurnberg Funnel: Designing
Minimalist instruction for practical computer skill. MIT
Press, Cambridge, MA, 1990.

[5] Carroll, J.M. ÒMaking use a design representationÓ,
Communications of the ACM, 37/12, 1994, pp. 29-35.

[6] Carroll, J.M., Ed. Scenario-based design: Envisioning
work and technology in system development. John Wiley
and Sons, New York, 1995.

[7] Carroll, J.M. & Rosson, M.B. ÒUsability specifications
as a tool in iterative developmentÓ, in H.R. Hartson (Ed.)
Advances in Human-Computer Interaction. Ablex,
Norwood, NJ, 1985.

[8] Carroll, J.M. & Rosson, M.B. ÒHuman-computer
interaction scenarios as a design representationÓ, in
Proceedings of the 23rd Annual Hawaii International
Conference on Systems Sciences. (Kailua-Kona, HI,
January 2-5, 1990). Los Alamitos, CA: IEEE Computer
society Press, 1990, pages 555-561.

[9] Carroll, J.M. & Rosson, M.B. ÒDeliberated evolution:
Stalking the View Matcher in design spaceÓ, Human-
Computer Interaction, 6, 1991, pp. 281-318.

[10] Carroll, J.M. & Rosson, M.B. ÒGetting around the task-
artifact cycle: How to make claims and design by
scenarioÓ, ACM Transactions on Information Systems,
10, 1992, pp. 181-212.

[11] Checkland, P.B. Systems thinking, systems practice.
Wiley, New York, 1981.

[12] Churchman, W. 1970. Operations research as a
profession. Management Science, 17(2), 37-53.

[13] Chin, G., Rosson, M.B. & Carroll, J.M. ÒParticipatory
analysis: Shared development of requirements from
scenariosÓ, in S. Pemberton (Ed.), Proceedings of CHI'97:
Human Factors in Computing Systems. (Atlanta, 22-27
March). ACM Press/Addison-Wesley, New York, 1997,
pp. 162-169.

[14] Duval, S. & Wicklund, R.A. A theory of objective self-
awareness. Academic Press, New York, 1972.

[15] Erikson, E.H. Identity and the life cycle. Norton, New
York, 1980.
0-7695-0001-3/99 $10
[16] Festinger, L. A theory of cognitive dissonance. Harper
& Row, New York, 1957.

[17] Festinger, L., Riecken, H.W. & Schachter, S. When
prophecy fails. University of Minnesota Press,
Minneapolis, 1956.

[18] Gagne, R.M., & Briggs, L.J. Principles of instructional
design. Holt, Rinehart and Winston, New York, 1979.

[19] Hutchins, C.M. ÒThe acoustics of violin platesÓ,
Scientific American, 245(4), 1981, pp. 170-186.

[20] Jacobson, I. ÒThe use-case construct in object-oriented
software engineeringÓ, in J.M. Carroll (Ed.), Scenario-
based design: Envisioning work and technology in system
development. John Wiley & Sons, New York, 1995, pp.
309-336.

[21] Karat, J. & Bennett, J.B. ÒUsing scenarios in design
meetings Ð A case study exampleÓ, in J. Karat (Ed.),
Taking design seriously: Practical techniques for human-
computer interaction design. Academic Press, Boston,
1991, pp. 63-94.

[22] Kyng, M. ÒCreating contexts for designÓ, in J.M.
Carroll (Ed.), Scenario-based design: Envisioning work
and technology in system development. John Wiley &
Sons, New York, 1995, pp. 85-107.

[23] McLuhan, M. Understanding media: The extensions o f
man. MIT Press, Cambridge, MA, 1994 (original edition,
1964).

[24] Muller, M.J., Tudor, L.G., Wildman, D.M., White, E.A.,
Root, R.A., Dayton, T., Carr, R., Diekmann, B., &
Dystra-Erickson, E. ÒBifocal tools for scenarios and
representations in participatory activities with usersÓ, in
J.M. Carroll (Ed.), Scenario-based design: Envisioning
work and technology in system development. John Wiley,
New York, 1995, pp. 135-163.

[25] Nisbett, R.E. & Wilson, T.D. ÒTelling more than we can
know: Verbal reports on mental processesÓ,
Psychological Review, 84, 1997, pp. 231-259.

[26] Potts, C. ÒUsing schematic scenarios to understand user
needsÓ, in DISÕ95: ACM Symposium on Designing
Interactive Systems, (Ann Arbor, MI). ACM Press, New
York, 1995, pp. 247-256

[27] Sch�n, D.A. Technology and change: The new
Heraclitus. Pergamon Press, New York, 1967.

[28] Sch�n, D.A. The reflective practitioner: How
professionals think in action. Basic Books, New York,
1983.

[29] Sch�n, D.A. Educating the reflective practitioner.
Jossey-Bass San Francisco, 1987.

[30] Scriven, M. ÒThe methodology of evaluationÓ, in R.
Tyler, R. Gagne, & M. Scriven (Eds.), Perspectives o f
curriculum evaluation. Rand McNally, Chicago, 1967, pp.
39-83.

[31] Schriver, K. Dynamics in document design. John Wiley
and Sons, New York, 1997.

[32] Wirfs-Brock, R. ÒDesigning objects and their
interactions: A brief look at responsibility-driven
designÓ, in J.M. Carroll (Ed.), Scenario-based design:
Envisioning work and technology in system
development. John Wiley & Sons, New York, 1995, pp.
337-360.
.00 (c) 1999 IEEE 11

